Deep-Nanoscale Pattern Engineering by Immersion-Induced Self-Assembly

Woon Ik Park,†,‡ Jong Min Kim,† Jae Won Jeong,† and Yeon Sik Jung *,†

†Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea and ‡R&D Center for Hybrid Interface Materials (HIM), Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea

ABSTRACT The directed self-assembly (DSA) of block copolymers (BCPs) is expected to complement conventional optical lithography due to its excellent pattern resolution and cost-effectiveness. Recent studies have shown that BCPs with a large Flory–Huggins interaction parameter (χ) are critical for a reduction of the thermodynamic defect density as well as an increase in pattern density. However, due to their slower self-assembly kinetics, high-χ BCPs typically necessitate solvent vapor annealing, which requires complex facilities and procedures compared to simple thermal annealing. Here, we introduce an immersion-triggered directed self-assembly (iDSA) process and demonstrate the combined advantages of excellent simplicity, productivity, large-area capability, and tunability. We show that the vapor-free, simple immersion of high-χ BCPs in a composition-optimized mixture of nonswelling and swelling solvents can induce the ultrafast (≤5 min) formation of nanoscale patterns with a pattern size ranging from 8–18 nm. Moreover, iDSA enables the reversible formation of seven different nanostructures from one sphere-forming BCP, demonstrating the outstanding controllability of this self-assembly route.

KEYWORDS: immersion · sub-15 nm · polymer · self-assembly · lithography

D

irected self-assembly (DSA) based on block copolymers (BCPs) has garnered much attention from semiconductor industries because self-organized BCP patterns have shown excellent ordering characteristics in the size range of 5–50 nm.1–14 Recent key accomplishments include the successful combination of traditional ArF lithography with DSA and its implementation on 300 mm wafers.15–18 Currently, a further reduction of the pattern size (e.g., sub-10 nm half-pitch patterns) and the achievement of a uniform alignment using a BCP with a high Flory–Huggins interaction parameter (χ) are two key directions in the DSA research.4,10 Moreover, theoretical studies show that the thermodynamic defect density of BCP patterns exponentially scales with χ and that the interfacial width, affecting the line edge roughness, is inversely proportional to χ.19,20 Along with the achievement of the formation of sub-10 nm patterns, these combined advantages of high-χ BCPs have already been reported in previous studies.6,9,10,19–25

However, the chain mobility of BCPs decreases exponentially with the segregation strength (χN), the product of χ and the degree of polymerization (N),26 resulting in a much lower throughput during the pattern formation process. Moreover, conventional thermal annealing often produces only nonequilibrium, kinetically trapped morphologies and fails to induce the formation of high-quality patterns from a high-χ BCP.27 In contrast, the long-range ordering of high-χ BCPs has been successfully achieved using solvent vapor treatments.6,9,14,21,27,28 which can effectively plasticize polymer chains. Moreover, the outstanding controllability in orientation and pattern geometry has also been suggested as an additional benefit.6,21,27,28 Recently, the ultrafast formation (an assembly time less than a few minutes) of self-assembled patterns was demonstrated using solvothermal treatments by a synergic enhancement effect on the polymer chain mobility both by solvent plasticization and thermal activation.29,30 However, compared to the simplicity of thermal annealing, it has been questioned whether solvent vapor annealing is compatible with general semiconductor manufacturing.4,10 One factor which increases the complexity of solvent vapor annealing is that the vapor should be...
generated from a liquid source and then efficiently and evenly delivered to the entire wafer surface to ensure the uniform swelling of BCP thin films. This requires the use of an efficient vapor generation process and a reliable delivery system compatible with CMOS fabrication technologies. Such a system with a large-area assembly capability has not yet been developed or demonstrated, to the best of our knowledge, due to the inevitable complexity associated with the handling of solvent vapors.

Here, we present immersion-triggered directed self-assembly (iDSA) method to simplify, expedite, and control the self-assembly of high-χ BCPs and, accordingly, to form 8–18 nm patterns. We report that BCP films immersed in a blend of swelling and nonswelling solvents can be extensively controlled and appropriately swollen by the targeted penetration of swelling solvent molecules into the BCP film and induce the self-assembly process. Various self-assembly nanostructures, such as spheres, cylinders, perforated lamella, lamellae, core-shell spheres, core-shell cylinders, and sugar cane cylinders can be formed from one BCP (PS-b-PDMS, SD51). (b) Procedure of the iDSA method, consisting of BCP spin-casting, immersion in the solvent mixture, and reactive ion etching to remove the PS and to oxidize the PDMS. The SEM image shows line and space patterns prepared from the SD51 BCP using iDSA.

RESULTS AND DISCUSSION

For the demonstration of the iDSA method, we chose poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) as a model system for high-χ BCPs with a known χ parameter of 0.26 at room temperature,6 which is at least several times larger than that of poly(styrene-b-methyl methacrylate) (PS-b-PMMA).31 The preferential existence of Si in the PDMS block provides a high degree of etch selectivity (>10:1) between the two constituent polymer blocks under O2 plasma etching conditions, easily revealing the oxidized PDMS nano-patterns for the subsequent pattern transfer and characterization. As a nonswelling solvent for PS-b-PDMS, where both of the blocks are hydrophobic, a polar solvent (ethanol) was chosen because its Hildebrand solubility parameter (δ ∼ 26.2 MPa1/2) is sufficiently different from those of PS (δ ∼ 18.5 MPa1/2) and PDMS (δ ∼ 15.5 MPa1/2).32 As a result, the immersion of PS-b-PDMS BCPs in pure ethanol (a fraction of toluene, f_{TOL} = 0) did not cause the swelling of the BCP film or any morphological change from the as-spun sample.
This tendency was consistent for all the BCPs with different molecular weights (MWs) ranging from 16 to 51 kg/mol (Figure S1). Methanol with a δ value of \sim29.7 MPa$^{1/2}$ also did not cause any noticeable difference in the thin-film morphologies, suggesting that various polar solvents (with a sufficiently large δ values such that they will not swell the any of the polymer blocks) would be viable candidates for a nonswelling solvent. On the other hand, the δ value of a nonswelling solvent should not be too large, as good miscibility with a swelling solvent (e.g., toluene) should be ensured. Alcoholic solvents (e.g., ethanol or methanol) satisfy these requirements well enough.

In contrast, an appropriate addition of a swelling solvent (toluene) to the nonswelling solvent effectively induces the swelling of the BCP film, as shown in Figure 2a. For example, a swelling ratio (SR = the swollen thickness divided by the dry thickness) of \sim2.5 was obtained at a f_{TOL} (the mole fraction of toluene in the toluene/ethanol mixture) value of 0.23. The estimation of SR is important for the understanding of the self-assembly behavior of BCP microdomains. The swelling ratio values measured in situ using thin film reflectometry (see Figure S2 for measurement configurations) show stable averages depending on f_{TOL}. Immediately after the immersion treatment of the BCP films, the samples were rinsed in ethanol for 10 s.
and dried by N₂ blowing in order to remove remaining solvent from the BCP film surface. The fluctuation of in situ measured swelling ratio is thought to be related to the liquid nature of the medium. The oscillation of the liquid surface level can refract the reflected beams on the BCP sample surface and interfere with the collection of reflected light through the fiber optic. Thus, we used the averaged values (from more than 150 data points) to estimate the swelling ratio of the samples under different immersion conditions. Although the swelling ratio profile during the final drying process could not be in situ monitored, the thickness of the BCP film was ex-situ measured using the same reflectometry system. It was confirmed that the BCP film thickness immediately after the drying process was restored to the original dry thickness (34–35 nm), as shown in Figure S3, indicating that all the solvent was completely removed.

Figure 2a clearly shows the rise of SR with an increase in \(f_{\text{TOL}} \). This phenomenon can be explained by an analytical model based on thermodynamic theories of solvents and polymer solutions. First, from the regular solution model, the difference between the chemical potential (\(\mu_{\text{TOL}}^{\text{fi}} \)) of toluene molecules in the toluene/ethanol mixture and that (\(\mu_{\text{TOL}}^{\text{o}} \)) of the molecules in pure liquid toluene is associated with the mixing free energy of the two solvents.

\[
\Delta \mu_{\text{TOL}} = \mu_{\text{TOL}}^{\text{fi}} - \mu_{\text{TOL}}^{\text{o}} = RT \ln(\gamma_{\text{TOL}} \cdot f_{\text{TOL}}) \tag{1}
\]

where \(\gamma_{\text{TOL}} \) is the activity coefficient of toluene in the mixture, \(R \) is the gas constant, and \(T \) is the solution temperature. By referring to previously reported \(\gamma_{\text{TOL}} \) values, eq 1 as a function of \(f_{\text{TOL}} \) is plotted in Figure 2c. Also, using Flory–Huggins theories, the chemical potential difference (\(\Delta \mu_{\text{TOL}}^{\text{BCP}} = \mu_{\text{TOL}}^{\text{BCP}} - \mu_{\text{TOL}}^{\text{o}} \)) between toluene molecules in the BCP/toluene mixture and in a pure liquid can be calculated, as follows:

\[
\Delta \mu_{\text{TOL}}^{\text{BCP}} = B_{\text{TOL}}^{\text{BCP}} - \mu_{\text{TOL}}^{\text{o}} = RT \ln(1 - \phi_{\text{BCP}}) + \phi_{\text{BCP}} \chi_{\text{TOL}} \cdot B_{\text{BCP}} \tag{2}
\]

In this equation, \(\chi_{\text{TOL}} \cdot \phi_{\text{BCP}} \) is the effective interaction parameter between toluene and BCP, and \(\phi_{\text{BCP}} \) is the volume fraction of BCP in the solvent-swollen BCP. The increasing tendency of \(\mu_{\text{TOL}}^{\text{BCP}} \) as a function of SR is shown in Figure 2d. While \(\mu_{\text{TOL}}^{\text{BCP}} \) is simply determined by the mixing ratio of toluene and ethanol, the solvent-immersion of BCP gradually increases \(\mu_{\text{TOL}}^{\text{BCP}} \) as more toluene molecules infiltrate into the BCP film until \(\mu_{\text{TOL}}^{\text{BCP}} \) reaches the value of \(\mu_{\text{TOL}}^{\text{o}} \) as schematically illustrated by Figure 2e. We can assume that \(f_{\text{TOL}} \) does not change during the BCP swelling process because the quantity of toluene incorporated into the BCP film is negligible compared to the amount of toluene in the immersion solution considering the thickness (25–35 nm) of BCP thin films. In the thermodynamic equilibrium swelling state, the chemical potential (\(\mu_{\text{TOL}}^{\text{fi}} \)) of toluene in the swollen BCP will be equal to that (\(\mu_{\text{TOL}}^{\text{o}} \)) in the solvent mixture. Thus, the condition of \(\mu_{\text{TOL}}^{\text{fi}} = \mu_{\text{TOL}}^{\text{o}} \) indicates that eq 1 = eq 2, whose solution provides the calculated equilibrium SR values shown in Figure 2b, demonstrating the increasing tendency in the equilibrium SR with \(f_{\text{TOL}} \). This thermodynamic model demonstrates that a careful selection of the mixing ratio provides the ability to control the SR of BCP films as the experimental data in Figure 2a confirm. From this clear relationship, the SR values can easily be identified without measuring it for all the samples. The curve of experimentally measured SR vs \(f_{\text{TOL}} \) is plotted and shown in Figure S4, enabling the fast and convenient estimation of SR as a function of \(f_{\text{TOL}} \) by relying on the clear dependence of SR on \(f_{\text{TOL}} \). The higher measured SR values of the BCP thin films than the calculated ones from the model can be explained by the effect that the structural frustration and the consequential loss of conformational entropy of polymer chains at interfaces (e.g., polymer–air and polymer–substrate interfaces) additionally contribute to the increase of the equilibrium SR for thin polymer films under the same environment.35

We explored how the controlled SR affects the self-assembly behavior of the PS-b-PDMS BCPs with a MW of 51.5 kg/mol (SD51) and a PDMS volume fraction (\(f_{\text{PDMS}} \)) of 17.5% and with a 45.5 kg/mol (SD45, \(f_{\text{PDMS}} \) is 34.5%). As shown in Figure 3a and Figure S5, the obtained morphologies were highly dependent on the key treatment parameters of \(f_{\text{TOL}} \), the immersion temperature (\(T \)), and the immersion time (\(t \)). Figures 3a present the changes in the morphologies of SD51 as a function of \(f_{\text{TOL}} \) and \(t \) while fixing \(T \) at 85 °C. When the \(f_{\text{TOL}} \) value was small (≤0.16), the immersion treatment produced spherical patterns, which appear to be similar to the as-spun samples, although the size uniformity and degree of ordering are evidently improved by the immersion annealing process. However, the increase of \(f_{\text{TOL}} \) to ~0.23 enabled the formation of 12 nm-wide line patterns (the first morphological transition, sphere-to-cylinder). An immersion treatment of the BCP for 5 min provided uniform ordering in 1-μm-wide trenches, as shown in Figure 3b (middle-left). A further increase of \(f_{\text{TOL}} \) produced dot patterns for short annealing times (\(t \sim 1 \) min) and caused dewetting eventually for a longer \(t \) in the case of too large SR, causing the instability of the BCP thin films. The stability of the BCP film was highly dependent on \(f_{\text{TOL}} \). While the stability time (>100 min) for the optimal \(f_{\text{TOL}} \) of 0.15 is much longer than the required assembly time (~5 min) to achieve high-quality patterns, the BCP film rapidly dissolved into the solvent in 5 min for a high \(f_{\text{TOL}} \) of 0.31. Figure S6 shows the film stability time of the SD51 BCP film as a function of \(f_{\text{TOL}} \) on the basis of SEM observations. However, with appropriate processing conditions (e.g., \(f_{\text{TOL}} = 0.23 \)), the stability of the BCP
films was maintained and confirmed by the constant film morphology, as investigated with optical microscopy and SEM imaging (Figure S7).

The second morphological transition (cylinder-to-sphere) can be understood in terms of the fact that the minority volume fraction ($f_{PDMS} = 17.5\%$) of the SD51 BCP in a dry state is close to the boundary region between the cylindrical and spherical phases of the BCP. Thus, the relatively small degree of preferential swelling for PS with a lower value of $f_{TOL} (~0.23)$ can lead to the formation of a cylindrical morphology, while a higher degree of swelling in the PS block with a larger $f_{TOL} (~0.31)$ decreases the effective f_{PDMS} in a highly solvent-swollen BCP, consequently causing the formation of spherical patterns. The occurrence of spherical domains at a much smaller $f_{TOL} (~0.16)$ value can be explained by the fact that untreated SD51 samples cast from a toluene solution show spherical microdomains (Figure S1) due to the preferential affinity between the PS block and the toluene. The slight rearrangement of the polymer chains under limited chain mobility due to the low BCP SR at a small f_{TOL} is thought to result in the formation of those ordered (nonequilibrium) dot patterns. (Figure 3b, top-left)

The immersion temperature T also significantly affected the self-assembly kinetics. When the PS-b-PDMS with a MW of 45 kg/mol (SD45) film was immersed in the mixture of toluene and ethanol ($f_{TOL} = 0.23$) at room temperature ($25^\circ C$), it took 8 h to obtain a well-ordered line pattern (Figure S5). However, a good alignment of microdomains was obtained in less than 5 min with the same f_{TOL} value by increasing the immersion temperature to $85^\circ C$ (Figure S5). The defect density (D) can be expressed using the formula $D \sim t^{-n}$. The empirical time-decay exponents (n) for T values of 25 and $85^\circ C$ were estimated to be 0.69 and 2.7, respectively, showing a much faster annihilation of defects at the higher T. Furthermore, despite the relatively slower kinetics of high-χ BCPs, the high n value of 2.7 at $85^\circ C$ suggests that the defect decay of iDSA is significantly faster than that of conventional thermal annealing of low-χ PS-b-PMMA.36

Figure 3. Demonstration of iDSA. (a) Self-assembled morphologies of the SD51 (PS-b-PDMS, MW = 51 kg/mol) BCP treated with different solvent compositions (f_{TOL}) and immersion times (t). Under proper swelling conditions, well-aligned nanopatterns can be obtained. (b) Well-ordered dot, line, and lamellar patterns with different feature sizes obtained from various PS-b-PDMS BCPs with different molecular weights and minority volume fractions. (c) A low-magnification SEM image of the SD45 BCP assembled by iDSA. (d) Variations of the critical dimension (CD), line edge roughness (LER), and line width roughness (LWR) depending on the chip position on a 4-in wafer.
Figure 3b shows that the iDSA method is effective for BCPs with a wide MW range; 45 kg/mol (SD45, \(f_{PDMS} = 34.5\% \)), 16 kg/mol (SD16, \(f_{PDMS} = 33.1\% \)), and 28 kg/mol (SD28, \(f_{PDMS} = 11.5\% \)), demonstrating well-ordered lines with widths of 16 and 8 nm and dots with diameters of 8 nm, respectively. Table S1 in the Supporting Information presents the geometry, CD, and CDU data of several iDSA patterns obtained with different BCPs and \(f_{TOL} \), demonstrating the controllability range of iDSA. Table S2 also shows that immersion time has a negligible effect on the CD, CDU, and pitch of the DSA patterns, respectively, within the stability time. These data and the immersion time range shown in Figure S6 provide the process window of iDSA. Furthermore, the possibility of the wafer-level scaling-up of iDSA was investigated by attaching small chip samples onto a four-inch wafer and performing iDSA, as shown in Figure 3d, demonstrating the good uniformity of the critical dimension (CD), the 3\(\sigma \) line edge roughness (LER), and the 3\(\sigma \) line width roughness (LWR). The standard deviations of CD, 3\(\sigma \) LER, and 3\(\sigma \) LWR were estimated to be 0.262, 0.115, and 0.239 nm, respectively.

Similarly, Figure S8 shows that the mixed solvent of heptane (a preferential solvent for the minority block, PDMS) and ethanol (a nonswelling solvent) also enabled the formation of various morphologies, including solid sphere, perforated lamella, lamella, core–shell sphere, and core–shell cylinder structures, which are distinct from the morphologies obtained for the same BCP (SD51) exposed to toluene and ethanol mixtures that swelled the majority PS block. This result can be attributed to two factors: (1) the increase of \(f_{PDMS} \) caused by the selective incorporation of heptane into the PDMS block and (2) the formation of several unique morphologies due to the highly selective nature of the solvent mixture at the polymer–solvent interface. Considering that typical solvent vapor annealing on the same BCP was able to induce the formation of only spherical or cylindrical morphologies, as shown in Figure S9, far greater morphological...
diversity and tunability was observed when the solvent immersion annealing process was utilized. We now demonstrate that a two-step immersion treatment can induce well-ordered core–shell nanostructures. Although a single-step treatment in the same solvent mixture of heptane and ethanol on BCP film can also produce core–shell structures (Figure S8), the degree of ordering and the regularity of the size and shape are relatively poor, most likely due to the limited chain mobility of the majority polymer block (PS, \(T_g \sim 100 \) °C) in the presence of its nonswelling solvent (heptane). In contrast, well-ordered dot arrays (Figure 3b, top-left) in a 1-μm-wide trench obtained by the treatment in the mixed solvent of toluene and ethanol can be readily converted into core (PS)-shell (PDMS) spheres via a simple and short annealing process in the mixture of heptane and ethanol (\(f_{\text{HEP}} = 0.056 \)) while preserving the degree of ordering and good registration in the guiding template, as presented in Figure 4b. The comparison of cross-section transmission electron microscopy (TEM) images of solid PDMS spheres (Figure 4a (left) and Figure S10) vs core–shell spheres (Figure 4a (right)) as well as the top-view TEM analysis results presented in Figure 4c and Figure S11 clearly support the formation of the well-defined nanoparticles composed of a PS core and PDMS shell embedded in the PS matrix. The PDMS block appears to be darker in the bright-field image due to the existence of Si. We can differentiate the core–shell nanospheres from conventional micelles as the cross-section TEM image shows that the embedded core–shell spheres are located in the middle of the PS matrix and because the BCP film surface does not show topographical variations before the removal of the PS matrix. Furthermore, they are different from a nanoporous BCP film obtained by reconstruction of...

Figure 5. Full reversibility of immersion self-assembly. (a) (top) Time-trace of the reorganization process (second immersion in the mixture of heptane and ethanol) from a solid PDMS sphere to a core–shell particle and to a perforated lamellar structure for monolayered SD51 BCP thin film. (bottom) Schematic illustrations of the morphological transition from the core–shell particle to the perforated lamella structure. (b) Reversible recovery from the core–shell structure to the solid sphere morphology via the third immersion treatment using the solvent mixture of toluene and ethanol. The SEM and AFM images show the morphological transformation process from the first original spheres (left, \(f_{\text{TOL}} = 0.23 \)) to the core–shell nanoparticles (middle, \(f_{\text{HEP}} = 0.056 \)), and to the recovered spheres (right, \(f_{\text{TOL}} = 0.23 \)).
aligned BCP microdomains\(^{37,38}\) in that our core–shell nanostructures are embedded in continuous BCP films as SEM and AFM images in Figure S12 demonstrate. The porous morphology shown in Figure 4b was obtained only by treating the core–shell morphology with O\(_2\) plasma to remove the central PS and matrix PS domains.

When the BCP films are immersed in the solvent of \(f_{\text{HEP}} = 0.26\) for 2 s, core (PS)-shell (PDMS) nanowires can also be formed. The energy-dispersive X-ray spectroscopy (EDS) elemental mapping of carbon (C) suggests that the inner domain in the PDMS shell is composed of PS, as shown in the bottom inset of Figure 4d. Supporting TEM analysis and elemental mapping results are also provided in Figure S13. Similarly, as shown in Figure 4e, unusual sugar cane-like nanostructures were obtained when the uniformly aligned cylindrical microdomains (Figure 3b, middle-left) produced by immersion into the mixture of toluene and ethanol were later exposed to the mixture of heptane and ethanol \(f_{\text{HEP}} = 0.056\). The magnified image shown in the inset of Figure 4e and the atomic force microscopy (AFM) image shown in Figure 4f reveal the periodic wiggling of the nanowire occurring due to the presence of PS-particulate cores inside the PDMS nanowires. This two-step iDSA using various solvent mixtures with different levels of affinity to polymer blocks can be an effective and simple route to prepare atypical self-assembly nanostructures that are differentiated from the usual spherical or cylindrical morphologies while also providing controllability of their locations and orientations.

We also observed a multistep morphological transformation while monitoring the time-dependent morphological evolution with a further increase in the second immersion treatment time under the condition of \(f_{\text{HEP}} = 0.056\). Figure 5a shows that the core–shell spheres are progressively converted into the perforated lamella morphology as the treatment duration time increases. During the conversion process, the increase of the PDMS area fraction in the TEM images suggests a gradual expansion of the PDMS block. For the sample treated for 10 s, the expanded PDMS block was observed to be connected, leading to the formation of a continuous PDMS layer containing perforations filled with PS chains, suggesting the metastability of the core–shell spheres under the treatment condition. With a longer treatment time, the PS perforations became more regular and their local ordering was achieved. Moreover, the core–shell spheres reorganized from the spherical morphology can easily be recovered to the original solid spheres via an additional treatment using a mixture of toluene and ethanol \(f_{\text{TOU}} = 0.23\) (Figure 5b). These results support the outstanding controllability, reversibility, and versatility of the controlled solvent immersion treatment.

CONCLUSIONS

To summarize, we demonstrated that the vapor-free immersion treatment (iDSA) in a solvent mixture composed of swelling and nonswelling solvents can successfully facilitate the self-assembly of BCPs for fast and convenient pattern formation in the sub-20 nm regime. The careful control of solvent composition and other parameters provided well-aligned line and dot patterns with dimensions in the range of 8–18 nm. The outstanding simplicity of iDSA stems from the fact that swelling solvent molecules are directly injected from the liquid source into BCP films without the need to generate vapors. Thermodynamic models substantiate that the equilibrium swelling ratio of the polymer films is determined by the solvent composition, as shown in our experimental observations. We also demonstrated that various types of BCP microdomain morphologies, including unusual core–shell structures, can be obtained by employing a different swelling solvent that penetrated into the minority BCP block. The controlled alignment of the core–shell structures can be achieved by a two-step immersion assembly process consisting of a guided ordering process of spherical or cylindrical structures via the first immersion treatment to target the swelling of the majority block and a subsequent second immersion process for conversion into core–shell nanostructures with good registration in topographic templates.

Because of the obvious advantages of outstanding simplicity and effectiveness, we expect that the iDSA process has the potential to replace the conventional solvent-vapor-based annealing method. Moreover, this method may be widely applicable beyond the self-assembly of BCPs to a range of other applications, such as organic solar cells or nanocrystal self-organization, where a simpler and faster treatment based on solvents can be greatly advantageous.

METHODS

Immersion Self-Assembly of BCP. All BCPs and end-functionalized polymers used in this study were purchased from Polymer Source Inc. (Canada). The Si trench templates with a width of 1 \(\mu\)m and a depth of 40 nm (Figure S14) for iDSA were fabricated using K\(_f\)F photolithography and reactive ion etching (RIE). To promote self-assembly of BCPs and improve the pattern quality by mitigating the strong interaction between BCP chains and native oxide surface, the Si substrates were functionalized with a hydroxyl-terminated homopolymer (PS—OH, MW = 42 kg/mol) at 150 °C for 2 h in a vacuum oven and washed with toluene to remove any unreacted polymer residues. BCP solutions dissolved in toluene at 1.1 wt % were spin-coated onto the substrates, having a film thickness of \(\sim 35\) nm, and then immersed in the mixtures of toluene/ethanol or heptane/ethanol in a stainless steel chamber at a temperature of RT – 85 °C. The homogeneous mixing of the solvents should be assured for the uniformity of the self-assembly process.
Film Thickness Measurement. The thickness of dry and solvent-swollen BCP films was measured using a thin film reflectometry system (F20–UV, FILMETRICS Inc., USA). For the dry thickness measurement, light reflected from the air/BCP and BCP/Si interfaces is collected, having the reflection coefficients \(r_0 \) and \(r_1 \) at 90° from the first (air/BCP) and second (BCP/Si) interfaces, respectively, as follows.

\[
\begin{align*}
 r_0 &= \frac{n_0 - n_i}{n_0 + n_i} \\
 r_1 &= \frac{n_1 - n_2}{n_1 + n_2}
\end{align*}
\]

where \(n_0, n_1, \) and \(n_2 \) are the refractive indices of air, the BCP film, and the Si substrate, respectively.

\[R = \left| |r_0|^2 + |r_1|^2 + 2|r_0||r_1| \cos \frac{2\pi n d}{\lambda} \right| \]

where \(R, d, \) and \(\lambda \) are reflectance, BCP film thickness, and wavelength, respectively. \(R \) is measured in the \(\lambda \) range of 380–1050 nm, showing a cosine dependence as a function of 1/\(\lambda \). The BCP film thickness was obtained by finding the \(n_1 \) and \(d \) values that provide the best value of goodness of fit (GOF) for the measured and calculated reflection spectrum \(R(\lambda) \). For the measurement of solvent swollen thickness, a layer stacking model of air/solvent/BCP/native oxide/Si and the same calculation principle was used.

Morphology Characterization. The self-assembled PS-b-PDMS microdomains were observed using transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS). Top-view and cross-sectional transmission electron microscopy (TEM) samples were prepared by mechanical polishing, followed by ion milling with Ar ions. High-resolution TEM (HRTEM) studies were performed using a JEOL JEM-AIR200F microscope operated at 200 kV. All the TEM samples were observed without reactive ion etching (RIE) or staining because of the inherent high contrast between PS and PDMS microdomains. The self-assembled nanostructures were investigated using field emission scanning electron microscopy (FE-SEM: Hitachi S-4800) operated with an acceleration voltage of 10 kV, using field emission scanning electron microscopy (FE-SEM: Hitachi S-4800) operated with an acceleration voltage of 10 kV, using field emission scanning electron microscopy (FE-SEM: Hitachi S-4800) operated with an acceleration voltage of 10 kV, using field emission scanning electron microscopy (FE-SEM: Hitachi S-4800) operated with an acceleration voltage of 10 kV. High-resolution TEM (HRTEM) studies were performed using a JEOL JEM-AIR200F microscope operated at 200 kV. All the TEM samples were observed without reactive ion etching (RIE) or staining because of the inherent high contrast between PS and PDMS microdomains. The self-assembled nanostructures were investigated using field emission scanning electron microscopy (FE-SEM: Hitachi S-4800) equipped with a Si AFM tip (height/radius: 3 μm/30 nm). All scanning processes were performed at room temperature and ambient pressure.

Conflicts of Interest: The authors declare no competing financial interest.

Acknowledgment. This research was supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078874).

Supporting Information Available: Additional pattern quality analysis data, morphological changes of BCPs under various iDSA treatment conditions, and TEM/EDS analysis data are included. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

